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Abstract. Representation of a transient electromagnetic field generated by a pulsed current
moving with a uniform velocity in terms of modes in the spherical coordinates is considered.
Peculiarities of the spacetime structure of these modes in relation to the observation location
and time as well as to the source current pulse duration, velocity of the pulse front, and the
radiator’s length are investigated. Possibilities of an adequate description of the fields due to
the above source are discussed.

1. Introduction

The goal of the present paper is to construct the axisymmetric transient solution in terms of
the spherical harmonics to the inhomogeneous Maxwell equations. The source is a moving
pulsed radial current starting at a fixed time and moving with a constant velocity. We discuss
the peculiarities of application of this solution to the description of the electromagnetic wave
produced by the above source. The solution of the electrodynamic problem is derived in
the spacetime domain using the method described in [1]:

(1) The electric and magnetic field vectors are expressed in terms of one scalar function
that reduces the vector problem to the scalar one.

(2) The solution of the scalar problem is constructed by means of the Smirnov method
of incomplete separation of variables [2]. Separating the polar-angle variable we get the
solution as the Legendre polynomial series whose coefficients, being functions of the radial
and time variables, satisfy the Euler–Poisson–Darbou equation.

(3) The analytical expressions for the above coefficients are obtained with the help of
the Riemann formula.

Having obtained the solution of the scalar problem, one can find the non-zero component
of the magnetic field by differentiation with respect to the polar angle. To obtain the
components of the electric field, we have to integrate the scalar solution over the time
variable. This representation of the electromagnetic field is, in fact, its expansion in terms
of the spherical harmonics.

Expansions of the transient electromagnetic field in terms of the spherical harmonics
were first constructed in [3–5] from the retarded Hertz vector [6–8] with the addition theorem

§ E-mail address: boris@snoopy.niif.spb.su
‖ E-mail address: utkin@uab.spb.ru

0305-4470/96/154493+22$19.50c© 1996 IOP Publishing Ltd 4493



4494 V V Borisov

for the spherical harmonics [9] and integral theorems [10]. Then the components of the
electromagnetic field are given by the Hertz vectors or by the vector and scalar potentials.
However, for the above special case of a moving pulsed current, it is convenient to construct
the solution of Maxwell’s equations by the general method [1]. The reasons to write this
article are the following:

(i) The well known expansions in terms of the spherical harmonics are obtained for
various steady-state (time independent or sinusoidal) fields while the explicit relations for
the transient fields are reported just for some individual cases [1, 11–13].

(ii) The moving pulse is a special case of the spacetime distribution of the source
current—here the spacetime structure of the emitted wave is particularly complicated and the
electromagnetic field produced by the above source pulse has specific properties (especially
for the case of pulse velocity equal to the velocity of light).

(iii) Application of the general expressions derived in [1, 3–5] to the description of
the above transient fields requires careful preliminary consideration of its feasibility (see
section 6).

2. Basic relations

In the spherical coordinatesr, ϑ, ϕ whose origin coincides with the starting point of the
axisymmetric radial current pulse moving with a constant velocityV , the current density
vector has only one non-zero component:

j = jrer

jr = 1

2πr2
h(βτ − r)h(r − β(τ − T ))h(l − r)F (τ, r, ϑ) τ > 0

jr ≡ 0 τ < 0.

(1)

Hereer is the unit radial vector,

h(s) =
{

1 for s > 0

0 for s < 0

is the Heaviside step function,τ = ct is the time variable (t is time andc is the velocity of
light), β = V/c is dimensionless velocity (0< β 6 1), T is the pulse duration. We choose
the constant parameterl as the minimum value for which the area of current distribution
is confined by a spherical domain of radiusl for all moments of time (finite radiator). For
various problems the residual part of the current termF(τ, r, ϑ) can be represented in the
form F(τ, r, ϑ) = F(ϑ)f (τ, r) whereF(ϑ) is the angular distribution. A simple example
of this distribution isF(ϑ) = cosϑ . For the source pulse moving along a straight line
F(ϑ) = δ(cosϑ − 1) whereδ is the Dirac delta-function.

Owing to the choice of the coordinate system and the axial symmetry one can obtain
from Maxwell’s equations for free space

1

r

∂

∂r
(rDϑ) − 1

r

∂Dr

∂ϑ
= −1

c

∂Hϕ

∂τ

− 1

r

∂

∂r
(rHϕ) = c

∂Dϑ

∂τ
1

r sinϑ

∂

∂ϑ
(Hϕ sinϑ) = c

∂Dr

∂τ
+ jr .

(2)

Here we use SI units; the components of the electric induction and the magnetic field
strength vectors areDr, Dϑ, andHϕ .
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The initial conditions are

Dr = Dϑ ≡ 0 Hϕ ≡ 0 τ < 0. (3)

There are several possibilities to describe the electromagnetic field with the help of
two scalar functions (potentials), see [14] and also [8] for details. For this case the
electromagnetic field components can be expressed via one-component radial Hertz vector
Π = 5(τ, r, ϑ)er introduced by Debye [15] and Bromwich [16] (see [14] for an extended
consideration)

Dr = −∂25

∂τ 2
+ ∂25

∂r2
Dϑ = 1

r

∂25

∂r∂ϑ
Hϕ = −c

r

∂25

∂τ∂ϑ
. (4)

Equation (2) together with initial conditions (3) yield the scalar problem(
∂2

∂τ 2
− ∂2

∂r2
− 1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

))
∂5

∂τ
= 1

c
jr

∂5

∂τ
≡ 0 τ < 0. (5)

As far asr ∈ (0, ∞), one needs a boundary condition at the limiting pointr = 0+. Let us
suppose that

∂5

∂τ

∣∣∣∣
r=0+

= 0. (6)

Here we require, in fact, that the magnetic field strength obeys the condition

rHϕ

∣∣∣∣
r=0+

= 0. (7)

Representing the scalar functions∂5/∂τ andjr in terms of the Legendre polynomials
Pn(cosϑ),

∂5

∂τ
=

∞∑
n=0

∂5n

∂τ
Pn(cosϑ) jr =

∞∑
n=0

jnPn(cosϑ) (8)

we separate the polar-angle variable in (5) and obtain the problem for the expansion
coefficients∂5n/∂τ(

∂2

∂τ 2
− ∂2

∂r2
+ n(n + 1)

r2

)
∂5n(τ, r)

∂τ
= 1

c
jn(τ, r)

∂5n

∂τ
≡ 0 τ < 0

∂5n

∂τ

∣∣∣∣
r=0+

= 0

(9)

with the expansion coefficients for the current density

jn(τ, r) = 1

2πr2
h(βτ − r)h(r − β(τ − T ))h(l − r)Fn(τ, r) (10)

whereFn are coefficients of the representation

F(τ, r, ϑ) =
∞∑

n=0

Fn(τ, r)Pn(cosϑ). (11)

One can find the coefficients∂5n/∂τ from the problem (9) with the help of the Riemann
formula

∂5n

∂τ
= 1

2c

∫ ∫
D

dτ ′ dr ′jn(τ
′, r ′)Pn

(
r2 + r ′2 − (τ − τ ′)2

2rr ′

)
= 1

4πc
In(τ, r) (12)
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Figure 1. Integration domain to the solution of problem (9) on ther ′, τ ′ plane.

where

In(τ, r) =
∫ ∫

D
dτ ′ dr ′h(βτ ′ − r ′)h(r ′ − β(τ ′ − T ))h(l − r ′)

×Fn(τ
′, r ′)

r ′2 Pn

(
r2 + r ′2 − (τ − τ ′)2

2rr ′

)
. (13)

The integration domainD is shown in figure 1(a) for τ < r and in figure 1(b) for τ > r.
The solution to the scalar problem (5), (6) is constructed from (8), (11), and (12):

∂5

∂τ
(τ, r, ϑ) = 1

4πc

∞∑
n=0

In(τ, r)Pn(cosϑ). (14)

Having obtained the solution to the scalar problem, one can readily obtain, with the
help of (4), the expansion of the magnetic field strength in terms of the non-steady-state
multipole fields

Hϕ =
∞∑

n=0

Hϕn = −c

r

∞∑
n=0

∂5n

∂τ

∂

∂ϑ
Pn(cosϑ) = − 1

4πr

∞∑
n=1

In(τ, r)P
1
n (cosϑ) (15)

whereP 1
n (cosϑ)

def= (∂/∂ϑ)Pn(cosϑ). To obtain the components of the electric induction,
one has to integrate (14) with respect to the time variable, which is not, in general, a trivial
task.
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3. Current pulse of infinite duration

In this section we introduce the general expression for description of the magnetic field
produced by the current pulse of infinite duration (T → ∞) moving within a bounded
region of space of the radiusl

jr = 1

2πr2
h(βτ − r)h(l − r)F (τ, r, ϑ).

Here each member of expansion (15) has the form

Hϕn = − 1

4πr
InP

1
n (cosϑ) = − 1

4πr
P 1

n (cosϑ)

∫ ∫
D

dτ ′ dr ′ h(βτ ′ − r ′)h(l − r ′)

×Fn(τ
′, r ′)

r ′2 Pn

(
r2 + r ′2 − (τ − τ ′)2

2rr ′

)
. (16)

Due to the step functions in the integrand, in most cases the actual integration domain
differs from the domainD shown in figures 1(a) and (b). Thus, different limits of integration
should be used forIn in (16) depending on the interrelations betweenτ , r, β, andl. For the
caser > l, when the observation point lies outside source’s region, all possible domains of
integration are shown in figures 2(a)–(c):

(a.i) If 0 < τ − r <
1−β

β
l (see figure 2(a)), one has

In =
∫ β

1+β
(τ−r)

0
dr ′

∫ r ′+τ−r

−r ′+τ−r

dτ ′ 8n(τ
′, r ′) +

∫ β

1−β
(τ−r)

β

1+β
(τ−r)

dr ′
∫ r ′+τ−r

r′
β

dτ ′ 8n(τ
′, r ′) (17)

where

8n(τ
′, r ′) = Fn(τ

′, r ′)
r ′2 Pn

(
r2 + r ′2 − (τ − τ ′)2

2rr ′

)
(18)

while τ − r is the observation time reckoned from the moment of the wavefront arrival at
the observation point (r, θ, ϕ). Evidently, for all previous moments of time,τ − r < 0, one
hasIn(τ, r) ≡ 0. From here on we will consider positive values ofτ − r only.

(a.ii) For the case1−β

β
l < τ − r <

1+β

β
l, which is illustrated in figure 2(b)

In =
∫ β

1+β
(τ−r)

0
dr ′

∫ r ′+τ−r

−r ′+τ−r

dτ ′ 8n(τ
′, r ′) +

∫ l

β

1+β
(τ−r)

dr ′
∫ r ′+τ−r

r′
β

dτ ′ 8n(τ
′, r ′). (19)

(a.iii) If τ − r >
1+β

β
l, see figure 2(c),

In =
∫ l

0
dr ′

∫ r ′+τ−r

−r ′+τ−r

dτ ′ 8n(τ
′, r ′). (20)

To obtain the total solution for given location, one should successively use formulae (17)–
(20).

For the caser < l we have another set of parameter interrelations governing the type of
the expression forIn (and, consequently, forHϕ , Dr , andDϑ ) and another set of integration
domains (see figure 3):

(b.i) r < τ < r/β, which is equivalent toτ + r <
1+β

β
r together withτ + r <

1+β

β
l

(note thatτ + r corresponds to the argument of the wave propagating towards the origin of
coordinates), in this case one has the same triangle integration domain as in case (a.i));

(b.ii) r/β < τ < l/β + l − r, which can be reduced to1+β

β
r < τ + r <

1+β

β
l;

(b.iii) l/β + l − r < τ < l/β + l + r, which can be rewritten asτ − r <
1+β

β
l < τ + r;

and
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Figure 2. The r ′, τ ′-plane diagrams for the current pulse of infinite duration (r > l): (a)
case (a.i), (b) case (a.ii), and (c) case (a.iii).

(b.iv) τ > l/β + l + r, which is equivalent toτ − r >
1+β

β
l.

Using diagrams on ther ′, τ ′-plane, one can easily obtain the limits of integration to
each of the above instances. For example, in case (b.iv)

In =
∫ r

0
dr ′

∫ r ′+τ−r

−r ′+τ−r

dτ ′ 8n(τ
′, r ′) +

∫ l

r

dr ′
∫ −r ′+τ+r

−r ′+τ−r

dτ ′ 8n(τ
′, r ′). (21)

Note that cases (b.i), (b.ii), and (b.iv) lead to two-term expressions while the most
complicated case (b.iii) results in three terms. Simpler formulae can be obtained if we
turn to the variablesξ ′

1,2 = τ ′ ∓ r ′ and ξ1,2 = τ ∓ r. For this representation the initial
expression forIn (13) becomes

In(ξ1, ξ2) = 2
∫ ∫

D
dξ ′

1 dξ ′
2h

(
1 + β

1 − β
ξ ′

1 − ξ ′
2

)
h

(
ξ ′

2 − 1 + β

1 − β
ξ ′

1 + 2β

1 − β
T

)
×h(ξ ′

1 + 2l − ξ ′
2)

Fn(ξ
′
1, ξ

′
2)

(ξ ′
2 − ξ ′

1)
2
Pn

(
1 − 2

(ξ2 − ξ ′
2)(ξ1 − ξ ′

1)

(ξ ′
2 − ξ ′

1)(ξ2 − ξ1)

)
. (22)

Integration domains to cases (b.i)–(b.iv) on theξ ′
1, ξ

′
2-plane are shown in figure 4.



Spherical harmonic representation of EM field 4499

Figure 3. The r ′, τ ′-plane diagrams for a current pulse
of infinite duration, instancer < l.

Figure 4. Theξ ′
1, ξ

′
2-plane diagrams for a current pulse

of infinite duration, instancer < l.

4. Current pulse of finite duration

For the case of a finite current-pulse duration the expressions for the field components can
be obtained (1) using the results of the above section and the principle of field superposition
or (2) constructing directly the integration domains for the current density

jr = 1

2πr2
h(βτ − r)h(r − β(τ − T ))h(l − r)F (τ, r, ϑ).

To use the first method one should rewrite the above formula in the form

jr = 1

2πr2
h(βτ − r)h(l − r)F (τ, r, ϑ)

− 1

2πr2
h(β(τ − T ) − r)h(l − r)F (τ, r, ϑ)

def= j (1)
r + j (2)

r

which indicate explicitly that the electromagnetic field produced by a source pulse of finite
duration may be described as a sum of the fields produced by two pulses of infinite
duration. The analytical expressions for thenth term of the field series determined by
the second source can be obtained from the results of the previous section by using the
variableτ̃ = τ − T instead ofτ . Here

j (2)
r = − 1

2πr2
h(βτ̃ − r)h(l − r)F (τ̃ + T , r, ϑ) =

∞∑
n=0

j (2)
n Pn(cosϑ)

j (2)
n (τ̃ , r) = − 1

2πr2
h(βτ̃ − r)h(l − r)Fn(τ̃ + T , r)

(23)

and for∂5n/∂τ one has the problem which is analogous to (9)(
∂2

∂τ̃ 2
− ∂2

∂r2
− n(n + 1)

r2

)
∂5n(τ̃ , r)

∂τ̃
= 1

c
j (2)
n (τ̃ , r)

∂5n

∂τ̃
≡ 0 τ̃ < 0

∂5n

∂τ̃

∣∣∣∣
r=0+

= 0.

(24)
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The solution to this problem is given by (12) where the time variableτ is replaced byτ̃
and can be easily obtained in the explicit form with the use of ther ′, τ ′-plane diagrams of
figure 3 orξ ′

1, ξ
′
2-plane diagrams of figure 4. Then one can construct thenth term

H(2)
ϕn (τ, r) = − 1

4πr
I (2)
n (τ, r)P 1

n (cosϑ)

and obtain the total magnetic field of the second source with the help of (15).
For r > l one can use the results (17)–(20) for appropriate parameter interrelations. For

example, case (a.i) corresponds to the inequality

0 < τ̃ − r <
1 − β

β
l (25)

(that isT < τ − r < T + 1−β

β
l) and to the explicit solution

I (2)
n = −

∫ β

1+β
(τ−T −r)

0
dr ′

∫ r ′+τ−T −r

−r ′+τ−T −r

dτ ′ 8(2)
n (τ ′, r ′)

−
∫ β

1−β
(τ−T −r)

β

1+β
(τ−T −r)

dr ′
∫ r ′+τ−T −r

r′
β

dτ ′ 8(2)
n (τ ′, r ′).

Due to the form ofFn in the inhomogeneous term (23) and the replacementτ → τ̃ in the
Riemann function, here8(2)

n should be written as

8(2)
n (τ ′, r ′) = Fn(τ

′ + T , r ′)
r ′2 Pn

(
r2 + r ′2 − (τ − T − τ ′)2

2rr ′

)
which is equal to8n(τ

′ + T , r ′) from the previous section. So, the expression forI (2)
n can

be reduced to

I (2)
n = −

∫ β

1+β
(τ−T −r)

0
dr ′

∫ r ′+τ−T −r

−r ′+τ−T −r

dτ ′ 8n(τ
′ + T , r ′)

−
∫ β

1−β
(τ−T −r)

β

1+β
(τ−T −r)

dr ′
∫ r ′+τ−T −r

r′
β

dτ ′ 8n(τ
′ + T , r ′)

= −
∫ β

1+β
(τ−T −r)

0
dr ′

∫ r ′+τ−r

−r ′+τ−r

dτ ′ 8n(τ
′, r ′)

−
∫ β

1−β
(τ−T −r)

β

1+β
(τ−T −r)

dr ′
∫ r ′+τ−r

r′
β

+T

dτ ′ 8n(τ
′, r ′). (26)

If, in addition, 0< τ −r <
1−β

β
l, that together with inequality (25) yieldsT < τ −r <

1−β

β
l,

one has case (a.i) for the first termI (1)
n and modified case (a.i) for the second termI (2)

n .
Thus, here the total field is defined by the integral

In = I (1)
n + I (2)

n =
∫ β

1+β
(τ−r)

0
dr ′

∫ r ′+τ−r

−r ′+τ−r

dτ ′ 8n(τ
′, r ′)

+
∫ β

1−β
(τ−r)

β

1+β
(τ−r)

dr ′
∫ r ′+τ−r

r′
β

dτ ′ 8n(τ
′, r ′)

−
∫ β

1+β
(τ−T −r)

0
dr ′

∫ r ′+τ−r

−r ′+τ−r

dτ ′ 8n(τ
′, r ′)

−
∫ β

1−β
(τ−T −r)

β

1+β
(τ−T −r)

dr ′
∫ r ′+τ−r

r′
β

+T

dτ ′ 8n(τ
′, r ′)
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=
∫ β

1+β
(τ−r)

β

1+β
(τ−T −r)

dr ′
∫ r ′+τ−r

−r ′+τ−r

dτ ′ 8n(τ
′, r ′)

+
∫ β

1−β
(τ−r)

β

1+β
(τ−r)

dr ′
∫ r ′+τ−r

r′
β

dτ ′ 8n(τ
′, r ′)

−
∫ β

1−β
(τ−T −r)

β

1+β
(τ−T −r)

dr ′
∫ r ′+τ−r

r′
β

+T

dτ ′ 8n(τ
′, r ′) (27)

where the function8n(τ
′, r ′) is defined by (18).

Evidently, the structure of thenth term of the electromagnetic field expansion cannot be
described by a unified formula. As in the case of the source-current pulse of infinite duration,
here the limits of integration depend on the interrelations between the characteristics of the
pulse l, β, and T and the observation conditionsτ and r. These interrelations are more
complicated than those of section 3 due to the additional parameterT .

We can use another approach to the problem and construct the integration domains
directly to solution (12) for the current density in its initial form (1). Let us again begin
with the caser > l. In addition, we consider the instanceT >

1+β

β
l that corresponds to

the so-called ‘long’ pulse. Corresponding domains of integration for different values of
the observation time reckoned from the moment of the wavefront arrival at the observation
point, τ − r, are shown in figure 5. Inter-relations between parameters can be subdivided
into the following cases:

(c.i) For 0< τ − r <
1−β

β
l the value ofIn is defined by relation (17) to the case (a.i)

of section 3.
(c.ii) If 1−β

β
l < τ − r <

1+β

β
l, the integralIn is described by formula (19).

Figure 5. Integration domains on ther ′, τ ′ plane for a source
current pulse of finite durationT . Instancer > l andT >

1+β
β

l.



4502 V V Borisov

Figure 6. Integration domains for a source current pulse of finite duration. Instancer > l and
1−β
β

l < T <
1+β
β

l: (a) caseT > 2l and (b) caseT < 2l.

(c.iii) In the range1+β

β
l < τ − r < T one should use the expression (20). Note that

cases (c.i)–(c.iii) correspond to the situationτ −T < r in which the finiteness of the source
pulse cannot be revealed. Therefore, the expressions obtained for the pulse of infinite
duration are still in force.

(c.iv) The first new result appears for the caseT < τ − r < T + 1−β

β
l, in which the

triangle integration domain is truncated by the liner = β(τ − T ).
(c.v) The integration domain for the rangeT + 1−β

β
l < τ − r < T + 1+β

β
l is shown on

the top of figure 5. For two other possible ranges,τ − r < 0 andτ − r > T + 1+β

β
l, the

value ofIn is equal zero.
The r ′, τ ′-plane diagrams for the instancer > l, 1−β

β
l < T <

1+β

β
l, and T > 2l are

represented in figure 6(a).
It is easily seen that for the cases (d.i) 0< τ −r <

1−β

β
l and (d.ii) 1−β

β
l < τ −r < T the

finiteness of the source pulse does not manifest itself, so one can use the initial formulae (17)
and (19).

A new type of integration domain emerges if (d.iii)T < τ − r <
1+β

β
l; here the initial

triangle is cut by both linesτ ′ = r ′/β and τ ′ = r ′/β + T corresponding to the front and
the backfront of the pulse.

For (d.iv) 1+β

β
l < τ − r < T + 1−β

β
l and for (d.v)T + 1−β

β
l < τ − r < T + 1+β

β
l we

have the same type of the integration domain as in cases (c.iv) and (c.v), respectively.
In figure 6(b) we present the integration domains for similar instance in whichT < 2l.

Here we have the following set of ranges:
(e.i) 0< τ − r <

1−β

β
l,

(e.ii) 1−β

β
l < τ − r < T ,
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Figure 7. Integration domains for a current pulse of
finite duration. Instancer > l andT <

1−β
β

l.
Figure 8. Theξ ′

1, ξ
′
2-plane diagrams for a current pulse

of infinite duration moving with the velocity of light,
instancer > l.

(e.iii) T < τ − r < T + 1−β

β
l,

(e.iv) T + 1−β

β
l < τ − r <

1+β

β
l, and

(e.v) 1+β

β
l < τ − r < T + 1+β

β
l.

The only new result appears for the case (e.iv) in which the simultaneous application of
both front (τ ′ > r ′/β) and backfront (τ ′ < r ′/β + T ) constraints result in the quadrangular
integration domain rather than the pentagonal one.

Using ther ′, τ ′-plane diagrams, one can easily obtain the set of integration domains for
the cases 2l < T <

1−β

β
l or 1−β

β
l < T < 2l—depending on whetherβ < 1

3 or not—as

well as for the case of bothT < 2l and T <
1−β

β
l. The latter case, corresponding to the

conditions of so-called ‘short’ pulse, is illustrated in figure 7.
For the sake of brevity, we do not present correspondingξ ′

1, ξ
′
2-plane diagrams (which

enable us to obtain all the results of this section in theξ1, ξ2-representation) as well as the
results for the instancer < l that can be treated analogously.

5. Current pulse moving with the velocity of light

A special case of the problem arises when the source pulse moves with the velocity of
light. For the purpose of illustration, here we use the alternativeξ ′

1, ξ
′
2-representation of the

integralIn introduced at the end of section 3 (recall thatξ ′
1,2 = τ ′ ∓ r ′).

The integration domains for different observation times to the instance of infinite pulse
duration (T → ∞) andr > l are shown in figure 8.

(f.i) For 0 < ξ1 < 2l, that is for 0< τ − r < 2l, the integral in question can be written
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in the form

In = 1
2

∫ ξ1

0
dξ ′

1

∫ ξ ′
1+2l

ξ1

dξ ′
2 8n(ξ

′
1, ξ

′
2) (28)

where the function8n(ξ
′
1, ξ

′
2) corresponds to8n(τ

′, r ′) expressed via the new variables

8n(ξ
′
1, ξ

′
2) = 4Fn(ξ

′
1, ξ

′
2)

(ξ ′
1 − ξ ′

2)
2

Pn

(
1 − 2

(ξ1 − ξ ′
1)(ξ2 − ξ ′

2)

(ξ ′
2 − ξ ′

1)(ξ2 − ξ1)

)
. (29)

(f.ii) If ξ1 > 2l, we have the triangle domain of integration and

In = 1
2

∫ ξ1

ξ1−2l

dξ ′
1

∫ ξ ′
1+2l

ξ1

dξ ′
2 8n(ξ

′
1, ξ

′
2). (30)

In the case of a source pulse of finite duration andr > l we have two more complicated
sets of integration domains (one forT > 2l and another forT < 2l).

For T > 2l we have the following set of the parameter interrelations (see figure 9):
(g.i) 0 < ξ1 < 2l,
(g.ii) 2l < ξ1 < T , and
(g.iii) T < ξ1 < T + 2l.
Again, for the first two cases the finiteness of the pulse cannot be detected, so the

expressions (28) and (30) are still valid. In case (g.iii) one has

In = 1
2

∫ T

ξ1−2l

dξ ′
1

∫ ξ ′
1+2l

ξ1

dξ ′
2 8n(ξ

′
1, ξ

′
2). (31)

For another instance,T < 2l, we have the cases shown in figure 10:
(h.i) 0 < ξ1 < T , corresponding to the solution (28),

Figure 9. Current pulse of finite durationT moving
with the velocity of light, instancer > l andT > 2l.

Figure 10. Current pulse moving with the velocity of
light, instancer > l andT < 2l.
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Figure 11. Limiting case (i.i): current pulse of infinite duration moving with
the velocity of light along the infinite straight locus (T → ∞ and l → ∞).

(h.ii) T < ξ1 < 2l, where

In = 1
2

∫ T

0
dξ ′

1

∫ ξ ′
1+2l

ξ1

dξ ′
2 8n(ξ

′
1, ξ

′
2) (32)

(h.iii) 2l < ξ1 < T + 2l with the same domain of integration as in case (g.iii) and, thus,
with In defined by (31).

For bothT > 2l andT < 2l one hasIn ≡ 0 if ξ1 > T + 2l.
For the observation locationsr < l we can obtain the limits of the integralIn by the

same method. Simple case (i.i) is illustrated in figure 11. Here the integration domain
corresponds to the limiting caseT → ∞ and l → ∞.

If T and l are finite, constructing the domains of integration forr < l is more
complicated than forr > l: when the observation point lies inside the source region
0 < r ′ < l, the transient processes for each term of the expansions (8) and (15) is defined
by the radius of the spherer ′ = r rather than that of the spherer ′ = l. As a consequence,
criteria of the integration domain choice include not onlyT and l (which are parameters),
but the radial coordinater (which is a variable) as well.

We have compared the approach described in sections 3–5 with an alternative method
that is analogous to the use of Liénard–Wiechert potentials, and find that the two approaches
are consistent with each other. This alternative method will be described in detail in a
forthcoming publication [17].

6. Discussion on applications

As an example of the application of the results obtained in the previous sections, here we
discuss how to use them for the description of the transient electromagnetic field produced
by a moving pulse of line current.

6.1. Delta-pulse of line current as a source of a localized electromagnetic wave

There has been much interest recently in so-called localized waves of both scalar and
electromagnetic nature [18–20]. However, two principal issues remain unanswered: (i) what
is their physical usefulness and (ii) how it is possible to launch such waves, in particular,
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how to realize a causal excitation scheme [21, 22]. Earlier we discussed the possible source
of a localized wave [23, 24] which is a spike pulsed current moving with the velocity of
light along a straight line. The existence of such pulses was proved in the 1960s, when the
electromagnetic phenomena accompanying the absorption of x-rays were investigated. Here
we discuss peculiarities of the localized wave representation in terms of modes in spherical
coordinates.

A simple case of localized wave generation can be observed if we use the source in
the form of the delta-pulse of current starting at the momentτ = 0 and moving with the
velocity of light along a straight line. In cylindrical coordinates whose origin coincides with
the starting point andz axis coincides with the line of propagation of the pulse, the only
non-zero component of the current densityjz can be written as

jz = 1

2π

δ(ρ)

ρ
δ(τ − z)F (z) τ > 0. (33)

The choice of the arbitrary functionF in the form F(z) = exp(−αz), whereα is a real
constant, ensures formation of a localized wave of some definite type. As is shown in
[23], here the exact solution to Maxwell’s equations yields, for theHϕ-component of the
magnetic field strength,

Hϕ = −∂v

∂ρ
= 1

4π
δ
(
τ −

√
ρ2 + z2

) ρ

(τ − z)
√

ρ2 + z2
exp

(
−1

2
α

(
τ + z − ρ2

τ − z

))
− 1

4π
h

(
τ −

√
ρ2 + z2

) 1

τ − z

∂

∂ρ
exp

(
−1

2
α

(
τ + z − ρ2

τ − z

))
= Hϕδ + Hϕh (34)

where the potentialv is the solution of the inhomogeneous scalar wave equation (localization
property of the wavefunctionv for both α > 0 andα < 0 is investigated in [24]).

On the other hand, the expression (33) can be written in cylindrical coordinates as

jr = 1

2π

δ(cosϑ − 1)

r2
δ(τ − r) exp(−αr cosϑ)

= 1

2π

δ(cosϑ − 1)

r2
δ(τ − r) exp(− 1

2α(τ + r)) (35)

which corresponds to the representation (1) in which the step functions are replaced by
δ(τ − r) andF(τ, r, ϑ) = δ(cosϑ − 1) exp(− 1

2α(τ + r)). One can easily check by direct
calculation that the coefficients of the expansion (8) for the above current density are given
by formula

jn = n + 1/2

2πr2
δ(τ − r) exp(− 1

2α(τ + r)). (36)

Using the method of section 5, case (i.i), we obtain (see figure 11)

In(ξ1, ξ2) = 2
∫ ξ1

0−
dξ ′

1

∫ ξ2

ξ1

dξ ′
2

n + 1/2

(ξ ′
2 − ξ ′

1)
2
δ(ξ ′

1) exp(− 1
2αξ ′

2)Pn

(
1 − 2

(ξ2 − ξ ′
2)(ξ1 − ξ ′

1)

(ξ ′
2 − ξ ′

1)(ξ2 − ξ1)

)
.

(37)

Upon integration with respect toξ ′
1, (37) becomes

In(ξ1, ξ2) = 2(n + 1
2)h(ξ1)

∫ ξ2

ξ1

dξ ′
2

1

ξ ′
2

2
exp(− 1

2αξ ′
2)Pn

(
1 − 2

ξ1(ξ2 − ξ ′
2)

ξ ′
2(ξ2 − ξ1)

)
(38)
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and for thenth term of the expansionHϕ = ∑∞
n=1 Hϕn we have

Hϕn = − 1

4πr
In(ξ1, ξ2)P

1
n (cosϑ).

As the integralIn is a function of the radial distancer and time τ only, the angular
distribution of each term is determined by the factorPn(cosϑ) (or, in case of the field
term, byP 1

n (cosϑ) ). Hence a single modeHϕn does not share the localization property
of the spacetime structure of the total fieldHϕ . This statement holds good provided that
summation of expansion (15) yields the correct result. Let us consider it more closely.

Using the solution of scalar problem (5) in whichjr has the form (35) andIn is defined
by (38) and the relation

Hϕ = −c

r

∂

∂ϑ

∂

∂τ
5

one can find that

Hϕ = − 1

2πr
h(ξ1)

∂

∂ϑ

∞∑
n=1

(n + 1
2)Pn(cosϑ)

∫ ξ2

ξ1

dξ ′
2

1

ξ ′
2

2
exp(− 1

2αξ ′
2)Pn

(
1 − 2

ξ1(ξ2 − ξ ′
2)

ξ ′
2(ξ2 − ξ1)

)
.

Interchanging summation and integration and making the substitution
∞∑

n=1

(n + 1
2)Pn(cosϑ)Pn

(
1 − 2

ξ1(ξ2 − ξ ′
2)

ξ ′
2(ξ2 − ξ1)

)
= δ

(
cosϑ − 1 + 2

ξ1(ξ2 − ξ ′
2)

ξ ′
2(ξ2 − ξ1)

)
this can be reduced to

Hϕ = − 1

2πr
h(ξ1)

∂

∂ϑ

∫ ξ2

ξ1

dξ ′
2

1

ξ ′
2

2
exp(− 1

2αξ ′
2)δ

(
cosϑ − 1 + 2

ξ1

ξ2 − ξ1

ξ2 − ξ ′
2

ξ ′
2

)
. (39)

The ξ ′
2 integration can be performed with the help of relation

δ(φ(ξ ′
2)) =

∑
i

δ(ξ ′
2 − ξ2i )

(∣∣∣∣ ∂φ

∂ξ ′
2

∣∣∣∣ ∣∣∣∣
ξ ′

2=ξ2i

)−1

(40)

whereφ is a differentiable function having only simple rootsξ2i . Here they are defined by
the equation

φ(ξ ′
2) = cosϑ − 1 + 2

ξ1

ξ2 − ξ1

ξ2 − ξ ′
2

ξ ′
2

= 0

which, for casesξ ′
2 6= 0 andξ2 −ξ1 6= 0, gives us the only value lying within the integration

domainξ1 < ξ ′
2 < ξ2. Denoting it asξ0

2 , we have

ξ0
2 = 2

ξ1ξ2

ξ1 + ξ2 − (ξ2 − ξ1) cosϑ
= τ 2 − r2

τ − r cosϑ
(41)

which in cylindrical coordinates takes the form

ξ0
2 = τ + z − ρ2

τ − z
> 0.

From (39), (40), and (41) one has

Hϕ = − 1

2π

1

τ 2 − r2

∂

∂ϑ
exp

(
−α

2

τ 2 − r2

τ − r cosϑ

)
= − 1

4π
α

r sinϑ

(τ − r cosϑ)2
exp

(
−α

2

τ 2 − r2

τ − r cosϑ

)
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which, in cylindrical coordinates representation, coincides with the second termHϕh of (34).
Our illustrative consideration turns out to be restricted to the second termHϕh of relation
(34): representation of the first termHϕδ with the help of the spherical-harmonic expansion
is not simple due to the fact thatHϕδ 6= 0 for ξ1 = 0. However, this example shows that
the terms of the spherical-harmonic expansion, when considered separately, do not describe
the specific features of the localized fields of the exp(τ + z − ρ2/(τ − z)) family. Only the
sum of the terms gives us the description of the localization property.

6.2. Description of the field due to a line current pulse of infinite duration moving with the
velocity of light

As is declared in item (iii) of the introduction, we give a simple example of how the
representation of thetransient electromagnetic field in terms ofnon-steady-statespherical
harmonics may result in misconception of its spacetime structure. Let the source be the line
current pulse of infinite duration moving with the velocity of light whose radial–temporal
distributionf (τ, r) (see comments just below equation (1)) is a function of time reckoned
from the wavefront arrival at the observation point,f (τ, r) = f (τ − r). Then for the case
of infinite current line (l → ∞) we have

jr = 1

2πr2
δ(cosϑ − 1)h(τ − r)f (τ − r) τ > 0

jr = 0 τ < 0
(42)

the expansion coefficients being

jn = n + 1/2

2πr2
h(τ − r)f (τ − r).

Noticing that the instance in question (T → ∞ andl → ∞) corresponds to the case (i.i)
of the previous section, one can obtain the magnetic field representation (15) where

In = 2(n + 1
2)

∫ ξ1

0−
dξ ′

1 f (ξ ′
1)

∫ ξ2

ξ1

dξ ′
2

1

(ξ ′
2 − ξ ′

1)
2
Pn

(
1 − 2

(ξ2 − ξ ′
2)(ξ1 − ξ ′

1)

(ξ ′
2 − ξ ′

1)(ξ2 − ξ1)

)
. (43)

Upon changing the variableξ ′
2 to x = 1−2(ξ2−ξ ′

2)(ξ1−ξ ′
1)/(ξ

′
2−ξ ′

1)(ξ2−ξ1), equation (43)
becomes

In = n + 1/2

ξ2 − ξ1

∫ ξ1

0−
dξ ′

1 f (ξ ′
1)

1

(ξ1 − ξ ′
1)(ξ2 − ξ ′

1)

∫ 1

−1
dx Pn(x). (44)

Since
∫ 1
−1 dx Pn(x) = 0 for all values ofn except zero, (44) yieldsIn = 0 for n > 1.

Consequently, each term of the expansionHϕ = ∑∞
n=1 Hϕn, including that forn = 1,

is equal to zero. We obtainHϕ ≡ 0 for the arbitrary source-current distribution of the
type f (τ − r), which is obviously incorrect. Actually, this misconception results from
condition (6) for∂5/∂τ at the limiting pointr = 0+. To obtain the correct solution to the
problem, one should rewrite the relation for the current density (42) in the form

jr = 1

2πr2
δ(cosϑ − 1)h(τ − r + r0)f (τ − r + r0) τ > 0 (45)

in which the origin of the spherical coordinates does not coincide with the starting point
of the current pulser0 > 0. Application of the solution method described in section 2 for
the case of infinite pulse duration (T → ∞), infinite current line (l → ∞), r > r0, and
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Figure 12. Integration domains in the case of a line current pulse starting at the pointr0 and
moving with the velocity of light: (a) on ther ′, τ ′ plane and (b) on theξ ′

1, ξ
′
2-plane.

τ − r < r0 leads to the diagrams shown in figure 12 and to the following representation of
In as an iterated integral:

In = 2
(
n + 1

2

) ∫ ξ1

−r0

dξ ′
1 f (ξ ′

1 + r0)

∫ ξ2

ξ ′
1+2r0

dξ ′
2

1

(ξ ′
2 − ξ ′

1)
2
Pn

(
1 − 2

(ξ2 − ξ ′
2)(ξ1 − ξ ′

1)

(ξ ′
2 − ξ ′

1)(ξ2 − ξ1)

)
.

(46)

Change of variablesξ ′
2 ⇒ x enables us to arrange the integral as

In = (
n + 1

2

)
(ξ2 − ξ1)

∫ ξ1

−r0

dξ ′
1

f (ξ ′
1 + r0)

(ξ1 − ξ ′
1)(ξ2 − ξ ′

1)

∫ 1

1−(ξ1−ξ ′
1)(ξ2−ξ ′

1−2r0)/[r0(ξ2−ξ1)]
dx Pn(x).

(47)

Here the internal integral is not equal to zero. HenceHϕn 6≡ 0 and the general expression
for the total magnetic field strength (15) yields

Hϕ = − 1

2π(ξ2 − ξ1)

∂

∂ϑ

∞∑
n=0

Pn(cosϑ)In

= − 2

c

∂

∂ϑ

∞∑
n=0

Pn(cosϑ)(n + 1
2)

∫ ξ1

−r0

dξ ′
1

f (ξ ′
1 + r0)

(ξ1 − ξ ′
1)(ξ2 − ξ ′

1)

×
∫ 1

1−(ξ1−ξ ′
1)(ξ2−ξ ′

1−2r0)/[r0(ξ2−ξ1)]
dx Pn(x)

= − 1

2π

∂

∂ϑ

∫ ξ1

−r0

dξ ′
1

f (ξ ′
1 + r0)

(ξ1 − ξ ′
1)(ξ2 − ξ ′

1)

×
∫ 1

1−(ξ1−ξ ′
1)(ξ2−ξ ′

1−2r0)/[r0(ξ2−ξ1)]
dx

∞∑
n=0

(n + 1
2)Pn(x)Pn(cosϑ). (48)



4510 V V Borisov

Noticing that

∞∑
n=0

(n + 1
2)Pn(x)Pn(cosϑ) = δ(x − cosϑ)

one gets∫ 1

1−(ξ1−ξ ′
1)(ξ2−ξ ′

1−2r0)/[r0(ξ2−ξ1)]
dx

∞∑
n=0

(n + 1
2)Pn(x)Pn(cosϑ)

= h

(
cosϑ − 1 + (ξ1 − ξ ′

1)(ξ2 − ξ ′
1 − 2r0)

r0(ξ2 − ξ1)

)
and

Hϕ = − 1

2π

∂

∂ϑ

∫ ξ1

−r0

dξ ′
1

f (ξ ′
1 + r0)

(ξ1 − ξ ′
1)(ξ2 − ξ ′

1)
h

(
cosϑ − 1 + (ξ1 − ξ ′

1)(ξ2 − ξ ′
1 − 2r0)

r0(ξ2 − ξ1)

)
= 1

2π
sinϑ

∫ ξ1

−r0

dξ ′
1

f (ξ ′
1 + r0)

(ξ1 − ξ ′
1)(ξ2 − ξ ′

1)

×δ

(
cosϑ − 1 + (ξ1 − ξ ′

1)(ξ2 − ξ ′
1 − 2r0)

r0(ξ2 − ξ1)

)
.

The carrier of theδ function is two roots

ξ1± = 1
2(ξ2 + ξ1) − r0 ±

√
1
4(ξ2 − ξ1)2 + r2

0 − r0(ξ2 − ξ1) cosϑ

of the equation

cosϑ − 1 + (ξ1 − ξ ′
1)(ξ2 − ξ ′

1 − 2r0)

r0(ξ2 − ξ1)
= 0

and for the case in question (r = 1
2(ξ2 − ξ1) > r0, τ > 0) only one of them, namely

ξ ′
1 = ξ1−, may lie in the domain of integration [−r0, ξ1]. Using formula (40) and turning

to ther, τ -representation, we have the final expression

Hϕ = − 1

2π
h

(
τ −

√
r2 + r2

0 − 2r0r cosϑ

)
r0r sinϑ

×
f

(
τ −

√
r2 + r2

0 − 2r0r cosϑ

)
√

r2 + r2
0 − 2r0r cosϑ

[
r2 −

(
r0 +

√
r2 + r2

0 − 2r0r cosϑ

)2
] . (49)

Remarkably, the correct solution to the electromagnetic problem for the case of source
current (42) can be obtained by taking the limitr0 → 0 in equation (49)

Hϕ = 1

4π
h(τ − r)

sinϑ

1 − cosϑ

1

r
f (τ − r). (50)

Notice that this solution is in agreement with the previously published results [25, 26] that
have been obtained without use of the multipole expansions.
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6.3. Electromagnetic field produced by current instantaneously switched on within a fixed
domain

Let the transient source current be switched on atτ = 0 and remain non-zero for all time
τ > 0 within the fixed domainr ∈ (0, l). For this case we do not have a moving current
pulse, and the representation of the current density

jr = 1

2πr2
h(τ)h(l − r)F (ϑ)f (τ, r) (51)

does not contain arguments of the typeτ ± r in the step functions. For this source, the
expansion coefficients∂5n/∂τ of the solution to the scalar problem (5) can be obtained via
problem (9) where

jn = Fn

2πr2
h(τ)h(l − r)f (τ, r). (52)

For the case in which the radial coordinate of the observation pointr is greater than the
radius of the source areal, the integration domains forIn are shown in figure 13(a) (compare
with figures 2(a)–(c) constructed for the moving current pulse). Note that ifτ − r > l, we
have forIn the same expression as in case (a.iii) (τ − r >

1+β

β
l) of section 3. Due to the

finite dimensions of the area in which the current exists atτ = 0+, the solution does not
equal zero for−l < τ − r < 0. Here we have

In = Fn

∫ l

r−τ

dr ′
∫ l−(r−τ)

0
dτ ′ f (τ ′, r ′)

r ′2 Pn

(
r2 + r ′2 − (τ − τ ′)2

2rr ′

)
.

This situation has no analogues in the cases discussed in the previous sections, which
correspond to the source pulses travelling with velocities 0< β 6 1. Actually, it is the
limiting caseβ → ∞ to the solution forβ > 1. To convince oneself that this is correct, it
suffices to turn to figure 13(b).

Eventually, let us note that the type of instantaneously switched on current discussed
in this subsection is used on frequent occasions as a simplified model of pulsed sources in
various problems of electromagnetics (see, for example, [27]).

Figure 13. Integration domains in the cases: (a) current instantaneously switched on and (b)
current pulse moves with the velocityβ > 1 within the fixed domainr ∈ (0, l).
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7. Conclusion

In the above sections we have considered only axisymmetric solutions. Notably, the results
can be extended to the more general non-axisymmetric case. This can be done in the simplest
manner for the radial source current, that is, forj = j (τ, r, ϑ, ϕ)er (TM polarization).
Introducing a potential so that

Dϑ = 1

r

∂25

∂r∂ϑ
Dϕ = 1

r sinϑ

∂25

∂ϕ∂r
Dr = −∂25

∂τ 2
+ ∂25

∂r2

Hϑ = c

r sinϑ

∂25

∂τ∂ϕ
Hϕ = −c

r

∂25

∂ϑ∂τ
Hr = 0

(53)

where 5 is a scalar function [14], the system of Maxwell’s equations is reduced to the
scalar inhomogeneous equation(

∂2

∂τ 2
− ∂2

∂r2
− 1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
− 1

r2 sin2ϑ

∂2

∂ϕ2

)
∂5

∂τ
= 1

c
jr . (54)

As is seen from (53), one can readily findHϕ and Hϑ by differentiating the solution of
(54) with respect to the angular variables. As previously, calculation of the electric field
components involves integration with respect to the time variable.

To separate the angular variables, let us turn to the representations

∂5

∂τ
=

∑
n,m

∂5nm

∂τ
P m

n (cosϑ)

(
cosmϕ

sinmϕ

)
jr =

∑
n,m

jnmP m
n (cosϑ)

(
cosmϕ

sinmϕ

)
ϑ ∈ [0, π ] ϕ ∈ [0, 2π ]

(55)

where

P m
n (cosϑ)

def= sinmϑ
∂m

(∂ cosϑ)m
Pn(cosϑ).

Substituting (55) in (54) and taking into consideration the initial (3) and boundary conditions
(7), we are led to the problem for the expansion coefficients(

∂2

∂τ 2
− ∂2

∂r2
+ n(n + 1)

r2

)
∂5nm(τ, r)

∂τ
= 1

c
jnm(τ, r)

∂5nm

∂τ
≡ 0 τ < 0

∂5nm

∂τ

∣∣∣∣
r=0+

= 0

(56)

in which the differential operator of the equationdoes not depend onm. Thus, the solution
to the above problem

∂5nm

∂τ
= 1

2c

∫ ∫
D

dτ ′ dr ′ jnm(τ ′, r ′)Pn

(
r2 + r ′2 − (τ − τ ′)2

2rr ′

)
(57)

depends onm only through the expansion coefficient of the sourcejnm. Comparing (57)
with the previously obtained result (12), one can see that calculations of the radial–temporal
part of the desired solution can be carried out completely in the framework of the solution
schemes that have been considered in the present paper.

It should be noted that, for arbitrary temporal variation of the current pulse, the time
dependence of the generated wave is different for different angular coordinates of the
observation point while each term of the spherical-harmonic series is a function of time
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and radial coordinate multiplied by a definite function of the angular variablesϑ andϕ, see
relations (8) and (55). Therefore it is impossible to estimate the field structure on the basis
of a finite sum of the spherical-harmonic modes: a single mode or several modes of the
expansions do not share the properties of the total field. It is the total sum of the terms that
gives us the correct result (see examples of section 6), which can be calculated for several
occasions only, as was originally pointed out by Kharkevich [28].

The research presented in this paper does not exhaust the potentialities of description
of the transient electromagnetic fields due to a moving pulsed current in terms of modes in
spherical coordinates. Here complete consideration has been carried out for the caser > l

only, which is more interesting in terms of applications. As shown in subsection 6.2, for
some occasions it is necessary to use the results concerned with the current distributions
akin to (45) in which the origin of the spherical coordinates does not coincide with the
starting point of the current pulse.

Instancesr < l andβ > 1 are presented in the form of straightforward examples. It is
evident that detailed consideration of these situations can be carried out with the help of the
foregoing solution schemes, but this cannot be done within the framework of one paper.

All the preceding concerns the radial current only. However, one can use the results
for calculation of fields due to arbitrary source-current density vector. The simplest way
to illustrate this is to write equations for the Cartesian componentsDi and Hi of the
electromagnetic field

∂2

∂τ 2
Di − ∇2Di = −1

c

(
∂

∂τ
j + c gradq

)
i

∂2

∂τ 2
Hi − ∇2Hi = (curlj)i .

(58)

The right-hand sides of these equations are defined by the Cartesian components of the
current density vectorji and by the charge densityq. Each scalar equation (58), being
represented in spherical coordinates, is similar to equation (54). Hence, solutions to these
equations for homogeneous initial conditions are defined, in corresponding notation, by
formula (57). This enables us to use the results obtained above.

Let us give another example. We represent the field vectors in the form

H = c curl
∂

∂τ
Π D = − ∂2

∂τ 2
Π + grad divΠ

whereΠ is the Hertz vector. Then the function(∂/∂τ)Π is a solution of the vector wave
equation (

∂2

∂τ 2
− ∇2

)
∂

∂τ
Π = 1

c
j

and for theCartesian componentsof the desired function expressed viavariables of the
spherical coordinate systemone has equations which are similar to (54). Thus, the solution
is again defined by equation (57). Here the components of the magnetic field strength can
be obtained explicitly while for calculation of the electric induction one should integrate
with respect to the time variable.

Note that the solution for arbitrary current density vector cannot be represented with
the help of a one-component vector, which makes the final results difficult to analyse.
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