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Abstract. Representation of a transient electromagnetic field generated by a pulsed current
moving with a uniform velocity in terms of modes in the spherical coordinates is considered.
Peculiarities of the spacetime structure of these modes in relation to the observation location
and time as well as to the source current pulse duration, velocity of the pulse front, and the
radiator’s length are investigated. Possibilities of an adequate description of the fields due to
the above source are discussed.

1. Introduction

The goal of the present paper is to construct the axisymmetric transient solution in terms of
the spherical harmonics to the inhomogeneous Maxwell equations. The source is a moving
pulsed radial current starting at a fixed time and moving with a constant velocity. We discuss
the peculiarities of application of this solution to the description of the electromagnetic wave

produced by the above source. The solution of the electrodynamic problem is derived in
the spacetime domain using the method described in [1]:

(1) The electric and magnetic field vectors are expressed in terms of one scalar function
that reduces the vector problem to the scalar one.

(2) The solution of the scalar problem is constructed by means of the Smirnov method
of incomplete separation of variables [2]. Separating the polar-angle variable we get the
solution as the Legendre polynomial series whose coefficients, being functions of the radial
and time variables, satisfy the Euler—Poisson—Darbou equation.

(3) The analytical expressions for the above coefficients are obtained with the help of
the Riemann formula.

Having obtained the solution of the scalar problem, one can find the non-zero component
of the magnetic field by differentiation with respect to the polar angle. To obtain the
components of the electric field, we have to integrate the scalar solution over the time
variable. This representation of the electromagnetic field is, in fact, its expansion in terms
of the spherical harmonics.

Expansions of the transient electromagnetic field in terms of the spherical harmonics
were first constructed in [3-5] from the retarded Hertz vector [6—8] with the addition theorem
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for the spherical harmonics [9] and integral theorems [10]. Then the components of the
electromagnetic field are given by the Hertz vectors or by the vector and scalar potentials.
However, for the above special case of a moving pulsed current, it is convenient to construct
the solution of Maxwell's equations by the general method [1]. The reasons to write this
article are the following:

(i) The well known expansions in terms of the spherical harmonics are obtained for
various steady-state (time independent or sinusoidal) fields while the explicit relations for
the transient fields are reported just for some individual cases [1, 11-13].

(i) The moving pulse is a special case of the spacetime distribution of the source
current—here the spacetime structure of the emitted wave is particularly complicated and the
electromagnetic field produced by the above source pulse has specific properties (especially
for the case of pulse velocity equal to the velocity of light).

(iii) Application of the general expressions derived in [1,3-5] to the description of
the above transient fields requires careful preliminary consideration of its feasibility (see
section 6).

2. Basic relations

In the spherical coordinates ¢, ¢ whose origin coincides with the starting point of the
axisymmetric radial current pulse moving with a constant velo&itythe current density
vector has only one non-zero component:

j - jrer

Jr = ih(,81: —rh(r — Bt —THh(I —r)F(z,r, ) >0 (1)
21 r?

Jr=0 T <0.

Heree, is the unit radial vector,

1 fors >0

h =
() 0 fors <0

is the Heaviside step functiom,= ct is the time variablez(is time andc is the velocity of
light), 8 = V/c is dimensionless velocity (& g < 1), T is the pulse duration. We choose
the constant parametéras the minimum value for which the area of current distribution
is confined by a spherical domain of radiuor all moments of time (finite radiator). For
various problems the residual part of the current tétta, r, #) can be represented in the
form F(z,r, %) = F(®) f(z, r) where F(¢) is the angular distribution. A simple example
of this distribution isF (%) = cosy. For the source pulse moving along a straight line
F () = §(cosy — 1) where$ is the Dirac delta-function.

Owing to the choice of the coordinate system and the axial symmetry one can obtain
from Maxwell's equations for free space

190 19D, 10H,

——(rDy) — — =———F

rad v c 0t
190 oDy

— T " (rH)=c—% 2
rar(r w=c ot @)
1 9 (H,sin®) = 9D, +j

rsing 09 ¢ ~ e T

Here we use Sl units; the components of the electric induction and the magnetic field
strength vectors ar®,, Dy, and H,,.
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The initial conditions are
D, =Dy =0 H,=0 T <0. 3)

There are several possibilities to describe the electromagnetic field with the help of
two scalar functions (potentials), see [14] and also [8] for details. For this case the
electromagnetic field components can be expressed via one-component radial Hertz vector
IT = I(z, r, ¥)e, introduced by Debye [15] and Bromwich [16] (see [14] for an extended
consideration)

D _ 9°11 N 9°11 _196%0 Ho_ € 9°11 @)
T 92 T a2 "7 raraw T raray
Equation (2) together with initial conditions (3) yield the scalar problem
92 32 1 d . d oIl 1 all
— - = _ (sing— — = — =0 T < 0. (5)
9t2  9r2  r2siny 99 v It ¢ ot

As far asr € (0, o0), one needs a boundary condition at the limiting peiat 0+. Let us
suppose that

oIl
bl = 0. (6)
ot r=0+
Here we require, in fact, that the magnetic field strength obeys the condition
rH, =0. )
r=0+

Representing the scalar functiofBl /9t and j. in terms of the Legendre polynomials
P,(cosy),

oIl >, 911, >
— = —— P,(cosy = i, P, (COSY 8
= ; 5. Palcos) ;J (cos?) ®)
we separate the polar-angle variable in (5) and obtain the problem for the expansion
coefficientsdIl,, /ot

2 9% n(m+D)\ o, (z,r) 1.
a2 a2 > = —Jjn(T,7)
ot ar r at c ©)
aIl, oIl,
=0 <0 =0
at 0T |,—oy
with the expansion coefficients for the current density
1
Jn(t,r) = s—5h(Bt —r)h(r — B(t = T)Hh( —r)F,(z, 1) (10)
2nr
where F,, are coefficients of the representation
F(z,r,9) = ) Fy(t,r)P,(cosy). (11)
n=0

One can find the coefficien®ll, /3t from the problem (9) with the help of the Riemann
formula

l 1 2 12 _ _+N\2 1
8 " = ? // dT/ dr/jﬂ(‘[/y r/)Pn (r T (T i ) > = 71}1 (Tv r) (12)
C D

0T 2rr’ 4rc
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Figure 1. Integration domain to the solution of problem (9) on #ier’ plane.

where

L(t,r) = // do’ dr’h(Bt’ — ¥R — B(z' — T)h( —71')
D
Fu(t',r") <r2 +r'2—(r— r/)z)
X P, .

r'2 2rr’

(13)

The integration domairD is shown in figure ) for ¢ < r and in figure 1) for ¢ > r.
The solution to the scalar problem (5), (6) is constructed from (8), (11), and (12):

9Tl 1 &
— ()= — L,(t,r)P,(cos®). 14
5. () 4m; (z, ) P, (cOS®) (14)

Having obtained the solution to the scalar problem, one can readily obtain, with the
help of (4), the expansion of the magnetic field strength in terms of the non-steady-state
multipole fields

H iH AL P,(cos?) ! il (z,r) P1(cos®) (15)
= n = T Aqln =~ n\T, 1
¢ —~ ¢ r = 9t v Ar =~ "

where P(cos®) def (8/0v) P,(cos®). To obtain the components of the electric induction,
one has to integrate (14) with respect to the time variable, which is not, in general, a trivial
task.
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3. Current pulse of infinite duration

In this section we introduce the general expression for description of the magnetic field
produced by the current pulse of infinite duratich & oo0) moving within a bounded
region of space of the radius

Jr = ih(,BT —r)h(l —r)F(t,r, 9).
2712
Here each member of expansion (15) has the form

1
H,, = ———I,P}(cosy) = ——P (cosﬁ)// de’ dr' k(BT — r'Yh(l — ')
Ay Ay
Fn(T/, r/) r2+ /2_( _ /)2
x 72 Py ( 2% ) . (16)

Due to the step functions in the integrand, in most cases the actual integration domain
differs from the domairD shown in figures ) and p). Thus, different limits of integration
should be used fof, in (16) depending on the interrelations between, 8, and!. For the
caser > [, when the observation point lies outside source’s region, all possible domains of
integration are shown in figures®g(c):

@)lfo<rt—r< #l (see figure )), one has

Tfﬂ (t—r) r'tT—r l‘%ﬁ (z—r) r'4t—r
’ ! I I ’ I ! !
In=/ dr / dr dbn(t,r)+/ dr / dr’ ®,(z', r") a7
0 a v

r'+t—r 1% (t—r) 7

where

Fu(t',r')  (r? 4712 = (t —1))?
D, (', 1) = P, 18
o= g (P (19
while t — r is the observation time reckoned from the moment of the wavefront arrival at
the observation point(6, ¢). Evidently, for all previous moments of time,—r < 0, one
hasI,(z,r) = 0. From here on we will consider positive valuestof r only.

(a.ii) For the case’;?1 < = —r < 21, which is illustrated in figure ()

%(T*r) r+t—r ! r'+T—r
I = f o / de’ &, (¢, ) + f d / d' @, ). (19)
0 _ r

r'+t—r %(r—r) 7
(aiiii) If T —r > 21, see figure 2,
r'4t—r
I, =/ dr// dte’ @,(t', ). (20)
0 —r'+T—r

To obtain the total solution for given location, one should successively use formulae (17)-
(20).

For the case < [ we have another set of parameter interrelations governing the type of
the expression fof, (and, consequently, faf,, D,, andDy) and another set of integration
domains (see figure 3):

(b.) r < T < r/B, which is equivalent tad + r < r together witht + r < 2]

(note thatr + r corresponds to the argument of the wave propagating towards the origin of
coordinates), in this case one has the same triangle integration domain as in case (a.i));
(b.ii) r/B <t <1/B+1—r, which can be reduced t9’r < v +r < ¥/l

(b.iii)y I/B+1—r <1t <1/B+1+r, which can be rewritten as —r < lJ“ﬂl <T+4r;
and

1+8



4498 V V Borisov

T R (a) T / (h)
oI, T
kN
T
17 i
T-F i
T-rfgg \
0 I \r N 0 RN r
T (c)
4
&
TR
i
g
0 { r ™, r'

Figure 2. The r’, t’-plane diagrams for the current pulse of infinite duratien>( [): (a)
case (a.i), lf) case (a.ii), andq) case (a.iii).

(b.iv) T > I/B + [ + r, which is equivalent ta — r > #l.
Using diagrams on the’, z’-plane, one can easily obtain the limits of integration to
each of the above instances. For example, in case (b.iv)

r r'4+T—r I —r'+T+r
1, =/ dr’/ dr’ ®,(t', r") +/ dr/f do’ @,(<',r"). (21)
0 — r —

r'4+T—r r'+T—r

Note that cases (b.i), (b.i), and (b.iv) lead to two-term expressions while the most
complicated case (b.iii) results in three terms. Simpler formulae can be obtained if we
turn to the variables;, = ¢" ¥ r" and&, = = ¥ r. For this representation the initial
expression forl, (13) becomes

1 1 2
I (€1, &2) = 2//Ddsid€§h (Jfgsi—sé)h (Sé - Jﬁéﬁ 1_/3,3T>

Fu (81, 65) (62— &) — Si)) .

hE +2 — &) L2 p (1-2
xh(&; + 52)($é_%-i)2 ( (55—51)(52—51)

Integration domains to cases (b.i)—(b.iv) on #je&;-plane are shown in figure 4.

(22)
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Figure 3. Ther’, 7’-plane diagrams for a current pulseFigure 4. The§;, £)-plane diagrams for a current pulse
of infinite duration, instance < I. of infinite duration, instance < I.

4. Current pulse of finite duration

For the case of a finite current-pulse duration the expressions for the field components can
be obtained (1) using the results of the above section and the principle of field superposition
or (2) constructing directly the integration domains for the current density

1
T 272
To use the first method one should rewrite the above formula in the form

Jr h(Bt —r)h(r — B(x = T)h( —r)F(z,r, ¥).

jr = ih(lgr —r)h(l —r)F(t,r, %)
212

Y B =T) =t = F@ ) 0 4 @
2712 ! "
which indicate explicitly that the electromagnetic field produced by a source pulse of finite
duration may be described as a sum of the fields produced by two pulses of infinite
duration. The analytical expressions for thth term of the field series determined by
the second source can be obtained from the results of the previous section by using the
variable? = t — T instead ofr. Here

1 o
i@ = —Wh(ﬂf —rh(—rFE+T,r0) = ij)Pn(cosﬂ)
n=0 (23)
- 1 - .
2@ ) == h(BE = k(=) Fu(E + T, 1)
and foraIl, /a7 one has the problem which is analogous to (9)
2 ~
2 a4 D\ ALGE ) 1o,
9t2  0r? r2 ot T (@)
aIl aIl (24)
=0 7<0 - =0.
0T T |,_oy




4500 V V Borisov

The solution to this problem is given by (12) where the time variable replaced byt
and can be easily obtained in the explicit form with the use ofrthe’-plane diagrams of
figure 3 oré;, £5-plane diagrams of figure 4. Then one can construct:theterm
H?(t,r) = —il,f)(r, r) P, (COS®)
Ay
and obtain the total magnetic field of the second source with the help of (15).
Forr > [ one can use the results (17)—(20) for appropriate parameter interrelations. For

example, case (a.i) corresponds to the inequality
1
O<T—-r< T'Bl (25)

(thatisT <t —r <T+ %1) and to the explicit solution

@ w0 et @
/ / / /
19 = f dr f do’ @,7 (<", r')

r'+1—T—r

W(f T— r) r'+r—=T-r
/ / de’ @@ (', r).
5 (@=T-r) Ll

B
Due to the form ofF,, in the inhomogeneous term (23) and the replacement 7 in the
Riemann function, heré@ should be written as
F,(t'+T,r) r2+r?—(t—T —1')?
Pll
r'2 2rr!

which is equal tod, (' + T, ') from the previous section. So, the expressionféf can
be reduced to

25 @—T-r) r'+T—T-r
1®=— / dr’ f dr’ ®,(t' + T, r")
0 —

r'+t—T—r

25 @—T-r) r'+t—T—r
—/ dr’ / di’ ®,(z'+T,r")
7

25 (x=T—r)

B ’
m(r—T—r) , r'+1—r , .
= — dr dr’ ®,(t', r")
0 —r'+T—r

1fLﬁ(‘[—T—r) r'+t—r
- dr’/ de’ @,(<, r). (26)

5 (@—T-r) 4T

@22)(1,/’ r/) —

If, in addition, 0< = —r < %321, that together with inequality (25) yields < t—r < 131,
one has case (a.i) for the first terff? and modified case (a.i) for the second teffR.
Thus, here the total field is defined by the integral

%(r—r) r'4t—r
L =10 +1? =/ dr// de’ @, (<", r")
0

—r'+Tt—r

%(r—r) r'+t—r
—i—/ dr’ / dr’ @,(t', r)

B (o
i (1) 7

Lo(e—T-r) r'+T—r
1+8 I / ! /
- dr dr’ @,(z', r)
0 —

r'+t—r

lf—ﬁ(rfor) r'+T—r
- dr’ f dr’ @, (<, r')

25 (@—T-r) %+T
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W(T r) r'+t—r

/ / dr’ ®,(t', )
T+p (t—T-r) —r'4+Tt—r

g(f—r) r'+t—r
+/ﬁ dr/// de’ @,(t', ")

o (71 B
ﬁ(r T— r) r'+t—r
/ / de’ @, (¢, r') (27)
5 (t—=T-r) %+T

where the functiond, (z/, r’) is defined by (18).

Evidently, the structure of theth term of the electromagnetic field expansion cannot be
described by a unified formula. As in the case of the source-current pulse of infinite duration,
here the limits of integration depend on the interrelations between the characteristics of the
pulsel/, 8, and T and the observation conditionsandr. These interrelations are more
complicated than those of section 3 due to the additional pararfieter

We can use another approach to the problem and construct the integration domains
directly to solution (12) for the current density in its initial form (1). Let us again begin
with the caser > . In addition, we consider the instan@e> £/ that corresponds to
the so-called ‘long’ pulse. Corresponding domains of integration for different values of
the observation time reckoned from the moment of the wavefront arrival at the observation
point, T — r, are shown in figure 5. Inter-relations between parameters can be subdivided
into the following cases:

(ciyForO<t—r < %l the value oflI, is defined by relation (17) to the case (a.i)
of section 3.

(cii) If £21 <t —r < 221, the integrall, is described by formula (19).

\ < (V)
\ « (c.iv)
\K <« (c.iii)
\ « (e
« (c.0)
, Figure 5. Integration domains on the/, ¢’ plane for a source
r r

current pulse of finite duratioff. Instancer > [ andT > iﬁﬁl.
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. T+ Bleiv)
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Figure 6. Integration domains for a source current pulse of finite duration. Instascé and
1;/3"1 <T < #l: (a) caseT > 2/ and b) caseT < 2I.

(c.iii) In the range™*?! < t — r < T one should use the expression (20). Note that
cases (c.i)—(c.iii) correspond to the situatior T < r in which the finiteness of the source
pulse cannot be revealed. Therefore, the expressions obtained for the pulse of infinite
duration are still in force.

(c.iv) The first new result appears for the caBe< t —r < T + %l, in which the
triangle integration domain is truncated by the line- 8(zr — 7).

(c.v) The integration domain for the range+ B8] < v —r < T + 2L is shown on
the top of figure 5. For two other possible ranges; r < 0 andt —r > T + %1, the
value of I, is equal zero.

The r/, /-plane diagrams for the instanee> I, 751 <T < 1+’31 andT > 2/ are
represented in figure &j.

It is easily seen that for the cases (d.ix0r —r < -7 and (d. ||)1 Bl <t—r < Tthe
finiteness of the source pulse does not manifest itselj3 SO one can use the initial formulae (17)
and (19).

A new type of integration domain emerges if (d.il) <t —r < %l; here the initial
triangle is cut by both lines’ = r'/8 andt’ = r’/B + T corresponding to the front and
the backfront of the pulse.

For (div) %1 <t —r < T+ XLl and for V)T + L1 <7 —r < T+ 2f1 we
have the same type of the integration domain as in cases (c.iv) and (c.v), respectively.
In figure 6p) we present the integration domains for similar instance in wiich 2/.
Here we have the following set of ranges:

(eN0<t—-r< %l,

(e.ii) #1 <t1—-r<T,
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Figure 7. Integration domains for a current pulse ofFigure 8. Theé;, &}-plane diagrams for a current pulse
finite duration. Instance >/ and7T < %l. of infinite duration moving with the velocity of light,
instancer > [.

(i) T <t —r <T+ 4Pl

(ev) T+ £l <7 —r < Hf1, and

(ev) Pl < —r < T + 4.

The only new result appears for the case (e.iv) in which the simultaneous application of
both front ¢’ > r'/B) and backfront{’ < r’/8 + T) constraints result in the quadrangular
integration domain rather than the pentagonal one.

Using ther’, ’-plane diagrams, one can easily obtain the set of integration domains for
the cases R< T < ;1 or /1 < T < 21—depending on whethes < 3 or not—as

well as for the case of botli < 2/ andT < £1. The latter case, corresponding to the
conditions of so-called ‘short’ pulse, is illustrated in figure 7.

For the sake of brevity, we do not present corresponding,-plane diagrams (which
enable us to obtain all the results of this section in&he,-representation) as well as the
results for the instance < [ that can be treated analogously.

5. Current pulse moving with the velocity of light

A special case of the problem arises when the source pulse moves with the velocity of
light. For the purpose of illustration, here we use the alterndtjy&;-representation of the
integral 7, introduced at the end of section 3 (recall that = =’ ).

The integration domains for different observation times to the instance of infinite pulse
duration " — oo) andr > [ are shown in figure 8.

(f.) For 0 < & < 21, that is for 0< t — r < 2/, the integral in question can be written
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in the form

& E142
u=;Ada£ A} @, (£}, £)) (28)

1

where the functiord, (¢;, &5) corresponds tab, (7', r’) expressed via the new variables

;oo BF (5L, 8) ( (61— &) (&2 — éﬁ))
D, (&, = P, l1-2 . 29
G152 = e g2 & — )& — &) (29)
(f.ii) If & > 2/, we have the triangle domain of integration and
& &+2
=i & e, (30)
&-2 &

In the case of a source pulse of finite duration and / we have two more complicated
sets of integration domains (one fér> 2/ and another fofl" < 21).

For T > 2] we have the following set of the parameter interrelations (see figure 9):

(9.)0< & <2,

(9.i)2l <& < T, and

(Qii) T <& < T+ 2.

Again, for the first two cases the finiteness of the pulse cannot be detected, so the
expressions (28) and (30) are still valid. In case (g.iii) one has

T g+2
L=t [ e, @)
§-2 &1

For another instancd, < 2/, we have the cases shown in figure 10:
(h.i) 0 < & < T, corresponding to the solution (28),

&
&
2r o (g.iii) ] /
: / y
.. < h.jii
I (g.i0) i)
L M (h.ii)
2 @) 214l
%ﬁ§¢g§ g %g (h.l)
o
0 2 T £ 0 T 2l E!

Figure 9. Current pulse of finite duratioi” moving Figure 10. Current pulse moving with the velocity of
with the velocity of light, instance >/ andT > 2I. light, instancer > [ andT < 2.
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T ,  Figure 11. Limiting case (i.i): current pulse of infinite duration moving with
0 ¢, 4 the velocity of light along the infinite straight locu¥ (-~ co and! — o).

(h.ii) T < & < 2[, where

(7 £+21
I =1 /0 d&; /g d) D€ &) (32)

(h.iii) 21 < & < T + 21 with the same domain of integration as in case (g.iii) and, thus,
with I, defined by (31).

For bothT > 2/ andT <2/ one hasl, =01if & > T + 2.

For the observation locations < [ we can obtain the limits of the integrd] by the
same method. Simple case (i.i) is illustrated in figure 11. Here the integration domain
corresponds to the limiting cage — oo andl — oc.

If T and! are finite, constructing the domains of integration for< [ is more
complicated than forr > [: when the observation point lies inside the source region
0 < r’ < [, the transient processes for each term of the expansions (8) and (15) is defined
by the radius of the spheré = r rather than that of the spheré=[. As a consequence,
criteria of the integration domain choice include not offlyand! (which are parameters),
but the radial coordinate (which is a variable) as well.

We have compared the approach described in sections 3-5 with an alternative method
that is analogous to the use ofélniard—Wiechert potentials, and find that the two approaches
are consistent with each other. This alternative method will be described in detail in a
forthcoming publication [17].

6. Discussion on applications

As an example of the application of the results obtained in the previous sections, here we
discuss how to use them for the description of the transient electromagnetic field produced
by a moving pulse of line current.

6.1. Delta-pulse of line current as a source of a localized electromagnetic wave

There has been much interest recently in so-called localized waves of both scalar and
electromagnetic nature [18—20]. However, two principal issues remain unanswered: (i) what
is their physical usefulness and (ii) how it is possible to launch such waves, in particular,
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how to realize a causal excitation scheme [21, 22]. Earlier we discussed the possible source
of a localized wave [23, 24] which is a spike pulsed current moving with the velocity of
light along a straight line. The existence of such pulses was proved in the 1960s, when the
electromagnetic phenomena accompanying the absorption of x-rays were investigated. Here
we discuss peculiarities of the localized wave representation in terms of modes in spherical
coordinates.

A simple case of localized wave generation can be observed if we use the source in
the form of the delta-pulse of current starting at the momest 0 and moving with the
velocity of light along a straight line. In cylindrical coordinates whose origin coincides with
the starting point and axis coincides with the line of propagation of the pulse, the only
non-zero component of the current densjitycan be written as

J. = %MS( —2)F(2) T>0. (33)
The choice of the arbitrary functiof in the form F(z) = exp(—az), wherea is a real
constant, ensures formation of a localized wave of some definite type. As is shown in
[23], here the exact solution to Maxwell's equations yields, for Hyecomponent of the
magnetic field strength,

Hy= -0 = s (r - o2+ 22)

3,0_47T

Grraoe( (e )
- ——a .

(t —2)y/p? + 22 2 T2

1 1 9 1 2
—h(t—\/,oz—l—z)exp(—a(r—i-z— P >>

4 o) T

¢78+Htph (34)

where the potential is the solution of the inhomogeneous scalar wave equation (localization
property of the wavefunction for botha > 0 anda < 0 is investigated in [24]).
On the other hand, the expression (33) can be written in cylindrical coordinates as

. 1 §(cosy — 1)
Jjr=-———-—"08(t —r)exp(—ar coSy)
2 r2
1 §(cosy —1
= ¥5(r —r)exp(—3a(t + 7)) (35)
2 r2

which corresponds to the representation (1) in which the step functions are replaced by
§(t —r)and F(z,r, %) = §(cosy — 1) exp(—%a(r +r)). One can easily check by direct
calculation that the coefficients of the expansion (8) for the above current density are given
by formula

n+1/2

=g =) exp(—3a(t +r)). (36)

Using the method of section 5, case (i.i), we obtain (see figure 11)

& & / (Ez — &) (61— 5i)>
L, g)=2[ d& | d&g—"T"=5 )Py |1-2 :
(37)
Upon integration with respect uq, (37) becomes
s, ) = 200+ Dhiey [ d R1<—2M> 38
(61 8) = 20+ Dhie) | - d3 5 5,2 exXp—aéy) &2 — £1) (39)
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and for thenth term of the expansiod/, = > -, H,, we have

1 1
7 1, (81, §2) P, (COSD).
wr

As the integrall, is a function of the radial distance and timer only, the angular
distribution of each term is determined by the fac#®ncos®) (or, in case of the field
term, by P1(cos®) ). Hence a single modél,, does not share the localization property
of the spacetime structure of the total fietf). This statement holds good provided that
summation of expansion (15) yields the correct result. Let us consider it more closely.

Using the solution of scalar problem (5) in whighhas the form (35) and, is defined
by (38) and the relation

Hyp = —

< Jd d
YT rovor
one can find that
‘ $1(52 &)
o S e [ L s (- 2555
b h(En Z(n 3) P, (cosv) 5 6 e P 2967) & — £
Interchanging summation and integration and making the substitution
— §1(52 — Eé)) ( §1(52 — Eé))
n+ 1)P,(cos®)P, (1—2/ =d(cosy) —142- "=
;( 2 ) §3(52 — &1) §(52— &1)
this can be reduced to
1 a (2 1 £1 & &
H,=———h(&)— [ d& — exp(—ia&l)s H— 142 2). 39
o 5 N6V A £, £2 exp(—3aé;) (cos + h-f & ) (39)
The & integration can be performed with the help of relation
¢ -1
3((E)) = 28@2 sm(‘ ; ) (40)
52 lgy=ss

whereg is a differentiable function having only simple rodts. Here they are defined by
the equation

&1 &—&
E2—& &
which, for caseg; # 0 andé; —&; # 0, gives us the only value lying within the integration
domain&; < &, < &. Denoting it aség, we have

2_ .2
5 =2 o S (41)
&1+& — (52— &)cosy T —rcosy
which in cylindrical coordinates takes the form

2

T—2z
From (39), (40), and (41) one has

H - 1 1 0 ex a 12-—r2
YT omt2— 29y exp 21 —rcosy

1 rsin® ox a t2—7?
B 47ra(r—rCOSl9)2 P\ =27 = cosp

¢(&) =cosy —1+2 =0

> 0.

E=14+z—
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which, in cylindrical coordinates representation, coincides with the secondHgjraf (34).

Our illustrative consideration turns out to be restricted to the second &gynof relation

(34): representation of the first terff,; with the help of the spherical-harmonic expansion

is not simple due to the fact théf,; # 0 for & = 0. However, this example shows that

the terms of the spherical-harmonic expansion, when considered separately, do not describe
the specific features of the localized fields of the @xp z — p?/(t — z)) family. Only the

sum of the terms gives us the description of the localization property.

6.2. Description of the field due to a line current pulse of infinite duration moving with the
velocity of light

As is declared in item (iii) of the introduction, we give a simple example of how the
representation of theansient electromagnetic field in terms ofon-steady-statspherical
harmonics may result in misconception of its spacetime structure. Let the source be the line
current pulse of infinite duration moving with the velocity of light whose radial-temporal
distribution f(z, r) (see comments just below equation (1)) is a function of time reckoned
from the wavefront arrival at the observation poiyit;r, ) = f(r — r). Then for the case

of infinite current line [ - oo) we have

5 58(0080 — Dh(z =) f(x = 1) >0 “2)

jr=0 <0

jr:

the expansion coefficients being

1/2
="~ f ),
Noticing that the instance in questiofi (~ oo and/ — oo) corresponds to the case (i.i)
of the previous section, one can obtain the magnetic field representation (15) where

& f2 1 & —&)EL— &)
I, =2 %/ dg] f(&! d/P,l(l—Z 2 1). 43
() | @) [ % &) — E)(E— £1) (43)

Upon changing the variablg to x = 1—-2(&;— &) (51— &;)/ (&, — &) (E2—&1), equation (43)
becomes

/ _n+1/2 (%
" -8 Joo

Sinceffldx P,(x) = 0 for all values ofn except zero, (44) yield$, = 0 forn > 1.
Consequently, each term of the expansiip = > -, H,,, including that forn = 1,
is equal to zero. We obtaif, = O for the arbitrary source-current distribution of the
type f(r — r), which is obviously incorrect. Actually, this misconception results from
condition (6) foraI1/dt at the limiting pointr = O+. To obtain the correct solution to the
problem, one should rewrite the relation for the current density (42) in the form

l 1
dé; f (& dx P, (x). 44
I G) e e — ) /_1 P (44)

Jr= d(cost — Dh(t —r+ro)f(t —r +rp) >0 (45)
2mr?
in which the origin of the spherical coordinates does not coincide with the starting point
of the current pulsey > 0. Application of the solution method described in section 2 for

the case of infinite pulse duratio (— oo), infinite current line { - o), r > rg, and
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T! r
(a) & (0

&

\<,

o

&

r -5 0 gl E;

Figure 12. Integration domains in the case of a line current pulse starting at the poatd
moving with the velocity of light: 4) on ther’, ¢’ plane andlf) on the&’, £-plane.

T —r < rg leads to the diagrams shown in figure 12 and to the following representation of
I, as an iterated integral:

& & 1 (&2 — &) (61— &)
I, =2(n+1% dg! f(gl + d’P,1<1—2 2 1).
(t2) [ dafEtm | ey (& — e — £0)
(46)
Change of variable§, = x enables us to arrange the integral as
. fE+r0) [
Li=h+3E—-8) | d 1 : dx P, (x).
(n+2)E =& ot E—EDE — 8D i@ g a0t
(47)

Here the internal integral is not equal to zero. Heiftg # 0 and the general expression
for the total magnetic field strength (15) yields

H, = 1 9 ip (cos®) 1,
YT 2nE—E) v T "
29 & & f & +ro)
=—-""N"pPcos)(n+ %) | de 1 .
caﬂ; 2 ) & E1—EDE—&)
1
X / dx P, (x)
1—(61—-81) (52—&1—2r0) /[ro(§2—61)]
_ Lot fE+n)
271 09 ),y L (E1—ED(E2— &)
1 0
x f dx Z(n + 1) P, (x) P, (cost). (48)
1-(51—81) (52—81—2r0) /[ro(52—61)] n=0
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Noticing that

(n + 3) Py (x) P, (COSY) = 8(x — COSD)
n=0
one gets
1 00
/ dx Y (n + 3) P (x) P (COSD)
1-(51—&1)(52—&1—2r0) /[ro(E2—81)] n=0
_ (cosﬁ 14 (1 — &) — & — 270))
ro(§2 — &1)
and
& / Y s
H, = NS ds; f(s/l pat ~h (Cosﬁ 1y BTG s ZrO))
2 39 ),y T (51— ED(E2— &) ro(62 — &1)

1 & fE +ro)
= _— siny dg;
27 " / g (E1—&DE — &)

(61 —&DE— & — 2ro))
ro(§2 — &1) .

The carrier of thel function is two roots

X8 (cosﬁ -1+

1o = 2G4+ E) —ro £ \/ 2(E2 — €% + 1§ — ro(62 — 1) cosy
of the equation

(61— &) (52— &1 — 2r0) _
ro(§2 — &1)

cosy — 1+ 0

and for the case in questiom & %(gz — &) > ro, T > 0) only one of them, namely
& = &, may lie in the domain of integration-fo, £&1]. Using formula (40) and turning
to ther, T-representation, we have the final expression

1
H =—_——

= 2”h (‘L’ — /24713 — 2ror cosﬂ) ror Sin®

f <r - \/,,2 +r¢ — 2ror COSz?)
x : (49)

2
r2 4 rg — 2ror COSY |:r2 — (ro + \/rz + 1§ — 2ror 00519) :|

Remarkably, the correct solution to the electromagnetic problem for the case of source
current (42) can be obtained by taking the limjt— 0 in equation (49)

1 sing 1
Hy=—h(t—r)/——— —r). 50
¢ = 4" T T cosy /T (50)
Notice that this solution is in agreement with the previously published results [25, 26] that
have been obtained without use of the multipole expansions.
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6.3. Electromagnetic field produced by current instantaneously switched on within a fixed
domain

Let the transient source current be switched or at 0 and remain non-zero for all time
7 > 0 within the fixed domain- € (0,/). For this case we do not have a moving current
pulse, and the representation of the current density

1
j, = ﬁh(r)h(l — ) F@®) f(z,r) (51)
Tr

does not contain arguments of the typet r in the step functions. For this source, the
expansion coefficientsIT, /dz of the solution to the scalar problem (5) can be obtained via
problem (9) where

R,
n = 5 S h(ORU =) f(x.1). (52)
Tr

For the case in which the radial coordinate of the observation poistgreater than the
radius of the source aréathe integration domains fay, are shown in figure 13 (compare
with figures 2&)—(c) constructed for the moving current pulse). Note that # r > [, we
have forI, the same expression as in case (a.ii){(r > 2*£1) of section 3. Due to the
finite dimensions of the area in which the current exists at 0+, the solution does not
equal zero for-I < t —r < 0. Here we have

I I—(r—7) ooy P24 P2 (r — )2
I, = an dr// dr’ /( )P,l d ( ) .
ez 0 2 2rr’

This situation has no analogues in the cases discussed in the previous sections, which
correspond to the source pulses travelling with velocities B < 1. Actually, it is the
limiting casef — oo to the solution ford > 1. To convince oneself that this is correct, it
suffices to turn to figure 18Bj.

Eventually, let us note that the type of instantaneously switched on current discussed
in this subsection is used on frequent occasions as a simplified model of pulsed sources in
various problems of electromagnetics (see, for example, [27]).

T (a) * )

Figure 13. Integration domains in the cases) (current instantaneously switched on amj (
current pulse moves with the velocig/> 1 within the fixed domain- € (0, /).
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7. Conclusion

In the above sections we have considered only axisymmetric solutions. Notably, the results
can be extended to the more general non-axisymmetric case. This can be done in the simplest
manner for the radial source current, that is, o= j(z,r, ¥, ¢)e, (TM polarization).
Introducing a potential so that

1 921 1 921 8211 N 0211
T aran Y7 rsing dpar g 3tz ' 92
5 ) (53)
c 0TIl c 0°I1
Hy = — H,y=— H =0
rsinyg dtde r 0ot

where Il is a scalar function [14], the system of Maxwell's equations is reduced to the
scalar inhomogeneous equation

GRS 10 (s ? 1 92\om 1, (54)
912 9r2  r2sing 99 90 ) r2sin29 92 ) 9t ¢’

As is seen from (53), one can readily firfd, and Hy by differentiating the solution of
(54) with respect to the angular variables. As previously, calculation of the electric field
components involves integration with respect to the time variable.

To separate the angular variables, let us turn to the representations

oIl oIl cosm
= Z P (cost)| . ¢
at 0t Sinmg

o o cosmg (55)
Jr=_jmP, (cosﬁ)(s. )

m Inm<p
¥ € [0, 7] ¢ €0, 2r]
where

Pm(cosy) E'sinmy —°_p,(cost).
(0 cosy)™

Substituting (55) in (54) and taking into consideration the initial (3) and boundary conditions
(7), we are led to the problem for the expansion coefficients

92 3% n(n+D)\ o, (z,r) 1.
912 - 9r2 + 72 a7 = ;]nm(f, r)

56
aI—I}'lln annm ( )
"M =0 <0 =0

aT 0T |,—o4

in which the differential operator of the equatidnes not depend om. Thus, the solution
to the above problem

oM, 1 r24r?2—(t —1)?
= 5 dr’ dr’ fum ,7 ' P, 57
ot 2c ffp © A jun (T, 1) ( 2rr’ ) 7

depends onn only through the expansion coefficient of the soupgg. Comparing (57)
with the previously obtained result (12), one can see that calculations of the radial-temporal
part of the desired solution can be carried out completely in the framework of the solution
schemes that have been considered in the present paper.

It should be noted that, for arbitrary temporal variation of the current pulse, the time
dependence of the generated wave is different for different angular coordinates of the
observation point while each term of the spherical-harmonic series is a function of time
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and radial coordinate multiplied by a definite function of the angular variablesd ¢, see
relations (8) and (55). Therefore it is impossible to estimate the field structure on the basis
of a finite sum of the spherical-harmonic modes: a single mode or several modes of the
expansions do not share the properties of the total field. It is the total sum of the terms that
gives us the correct result (see examples of section 6), which can be calculated for several
occasions only, as was originally pointed out by Kharkevich [28].

The research presented in this paper does not exhaust the potentialities of description
of the transient electromagnetic fields due to a moving pulsed current in terms of modes in
spherical coordinates. Here complete consideration has been carried out for thescase
only, which is more interesting in terms of applications. As shown in subsection 6.2, for
some occasions it is necessary to use the results concerned with the current distributions
akin to (45) in which the origin of the spherical coordinates does not coincide with the
starting point of the current pulse.

Instances: < andB > 1 are presented in the form of straightforward examples. It is
evident that detailed consideration of these situations can be carried out with the help of the
foregoing solution schemes, but this cannot be done within the framework of one paper.

All the preceding concerns the radial current only. However, one can use the results
for calculation of fields due to arbitrary source-current density vector. The simplest way
to illustrate this is to write equations for the Cartesian componéntsand H; of the
electromagnetic field

azD‘ V2D, = ! 8'+ rad
o7z Di i == |35.9 Tcoradg

82
— H; — V?H; = (curl§);
arz 1 1 I

’ (58)

The right-hand sides of these equations are defined by the Cartesian components of the
current density vectoy; and by the charge density. Each scalar equation (58), being
represented in spherical coordinates, is similar to equation (54). Hence, solutions to these
equations for homogeneous initial conditions are defined, in corresponding notation, by
formula (57). This enables us to use the results obtained above.

Let us give another example. We represent the field vectors in the form

2

0 d .
H = ccurl —1II D = ——1II+ grad divIl
ot 972

wherell is the Hertz vector. Then the functiaqid/ot)II is a solution of the vector wave

equation
92 0 1
— V2 —II="j
<8r2 ) ot J

and for theCartesian componentsf the desired function expressed wariables of the
spherical coordinate systewne has equations which are similar to (54). Thus, the solution
is again defined by equation (57). Here the components of the magnetic field strength can
be obtained explicitly while for calculation of the electric induction one should integrate
with respect to the time variable.

Note that the solution for arbitrary current density vector cannot be represented with
the help of a one-component vector, which makes the final results difficult to analyse.
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